
Autoencoder - Kaggle
自编码器模型 class AutoEncoder(nn.Module): def __init__(self, input_dim=512, hidden_dim=256, latent_dim=64): super().__init__() self.encoder = nn.Sequential( nn.Linear(input_dim, …
MNIST By Using Autoencoder - Kaggle
We're now going to move onto something really exciting, building an autoencoder using the tf.keras library. For simplicity, we'll be using the MNIST dataset for the first set of examples. …
Autoencoders and Variational Autoencoder - Kaggle
An autoencoder is a type of unsupervised neural network designed to learn an efficient, compressed representation of data. Its primary purpose is to reconstruct its own input.
Understanding Auto-encoders | Kaggle
Explore and run machine learning code with Kaggle Notebooks | Using data from No attached data sources
Autoencoder for Text in Pytorch - Kaggle
We want to train an Autoencoder model using a series of text documents that talk about disasters. We use one-hot coding representation to transform words into a vector representation.
Autoencoder final - Kaggle
from PIL import Image import numpy as np import tensorflow as tf # Load model autoencoder = tf.keras.models.load_model('/kaggle/input/autoencoder_checkpoint.keras/keras/default/1/autoencoder_checkpoint.keras') …
Image Colorization Autoencoder - Kaggle
Creating the autoencoder ¶ In [5]: # Defining the dataset class ColorizationDataset(Dataset): def __init__(self, images): self.images = images self.loaded_images = read_images(self.images) …
Network anomaly detection with Autoencoder - Kaggle
This notebook presents a practical implementation of an anomaly detection pipeline using an LSTM-based autoencoder, inspired by the DeepADoTS framework highlighted in the paper.
[Pytorch ] Anomaly Detection with AutoEncoder - Kaggle
To use AutoEncoder for anomaly detection, we need to apply an unsupervised learning method. Since we will apply unsupervised learning, we only train normal data for training. ¶
Image Classification: Autoencoder+KNN - Kaggle
Building and Fitting Very Simple Autoencoder ¶ In this section I will build and fit a very simple autoencoder. This autoencoder will just contain dense layers. I will use a 16-d code.